紫外可见吸收光谱基本原理
声明:本期内容主要综合一些参考书以及百度文库中的资料,都是些非常基础的知识,已经了解和掌握的朋友可以忽略,欢迎关注下一期:光催化降解染料中的紫外可见吸收光谱。
相关内容链接:
1. 紫外可见吸收光谱产生的原理
紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。
紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱有两个重要的特征:最大吸收峰位置(λmax)以及最大吸收峰的摩尔吸光系数(κmax)。最大吸收峰所对应的波长代表着化合物在紫外可见光谱中的特征吸收。而其所对应的摩尔吸收系数是定量分析的依据。
紫外可见吸收光谱中重要的概念:
生色团:产生紫外或者可见吸收的不饱和基团,一般是具有n电子和π电子的基团,如C=O, C=N等。当出现几个生色团共轭时,几个生色团所产生的吸收带将消失,取而代之的是新的共轭吸收带,其波长比单个生色团的吸收波长长,强度也增强。
助色团:本身无紫外吸收,但可以使生色团吸收峰加强或(和)使吸收峰红移的基团,如OH,Cl等
红移:最大吸收峰向长波长方向移动。
蓝移:最大吸收峰向短波长方向移动。
增(减)色效应:使吸收强度增强(减弱)的效应。
2. 价电子跃迁的类型以及吸收带
A. 有机物的价电子跃迁
在有机化合物分子中有形成单键的σ电子、形成不饱和键的π电子以及未成键的孤对n电子。当分子吸收紫外或者可见辐射后,这些外层电子就会从基态(成键轨道)向激发态(反键轨道)跃迁,主要的跃迁方式有四种,所需能量大小顺序为:σ→σ* >n→σ*>π→π*>n→π*。
σ→σ*跃迁:吸收能量较高,一般发生在真空紫外区。饱和烃中的C-C属于这种跃迁类型。如乙烷C-C键σ→σ*跃迁,λmax为135nm。(注:由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此无法检测σ→σ*跃迁)
n→σ*跃迁:含有O、N、S等杂原子的基团,如-NH2、-OH-、-SH等可能产生n→σ*跃迁,摩尔吸光系数较小。
π→π*跃迁:有π电子的基团,如C=C,C≡C,C=O等,会发生π→π*跃迁,一般位于近紫外区,在200 nm左右,εmax≥104 L·mol-1·cm-1,为强吸收带。
K带:共轭体系的π→π*跃迁又叫K带,与共轭体系的数目、位置和取代基的类型有关。
B带:芳香族化合物的π→π*跃迁而产生的精细结构吸收带叫做B带。
E带:E带是苯环上三个双键共轭体系中的π电子向π*反键轨道跃迁的结果,可分为E1和E2带(K带)。苯的B带和E带如下图所示。
n→π*跃迁:含有杂原子的不饱和基团:如C=O,C=S,-N=N-等基团会发生n→π*。发生这种跃迁能量较小,吸收发生在近紫外或者可见光区。特点是强度弱,摩尔吸光系数小,产生的吸收带也叫R带。
以上各吸收带相对的波长位置由大到小的次序为:R、B、K、E2、 E1 ,但一般K和E带常合并成一个吸收带。
B.无机物中的电子跃迁
无机化合物的紫外可见吸收主要是由电荷转移跃迁和配位场跃迁产生。
电荷转移跃迁:无机络合物中心离子和配体之间发生电荷转移:
上述公式中心离子(M)为电子受体,配体(L)为电子给体。不少过渡金属离子和含有生色团的试剂反应生成的络合物以及许多水合无机离子均可产生电荷转移跃迁。
电荷转移吸收光谱出现的波长位置,取决于电子给体和电子受体相应电子轨道的能量差。一般,中心离子的氧化能力越强,或配体的还原能力越强(相反,若中心离子的还原能力越强,或配体的氧化能力越强),则发生电荷转移跃迁时所需能量越小,吸收光谱波长红移。
配位场跃迁:元素周期表中第4和第5周期过渡元素分别含有3d和4d轨道,镧系和锕系元素分别有4f和5f轨道。这些轨道能量通常是简并(相等)的,但是在络合物中,由于配体的影响分裂成了几组能量不等的轨道。若轨道是未充满的,当吸收光后,电子会发生跃迁,分别称为d-d跃迁和f-f跃迁。
3. 影响紫外可见吸收光谱的因素
共轭效应:体系形成大π键,使各能级间的能量差减小,从而电子跃迁的能量也减小,因此共轭效应使吸收发生红移。
溶剂效应:1.由于溶剂的存在使溶质溶剂发生相互作用,使精细结构消失。
2. 对π→π*跃迁来讲,溶剂极性增大时,吸收带发生红移;对于n→π*跃迁来讲,吸收光谱发生蓝移。
3. 不同化合物在不同pH下存在形态不同,吸收峰会随pH发生改变。
如苯酚在碱性介质中形成苯酚阴离子,其吸收峰从210.5和270nm红移到235nm和287nm。
4. 紫外可见吸收光谱的应用原理
A. 定性原理
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线。有机物可以采用与标准有机化合物图谱对照,由于紫外光谱反应的是分子中生色团和助色团的特性,因此具有相同基团的化合物吸收光谱类似。因此,也要和其他方法结合才能进行结构分析。
B. 定量原理—朗伯比尔定律
注意:运用朗伯比尔定律时,溶液一定要是稀溶液。
5. 紫外可见吸收光谱的特点
1. 灵敏度高:可测10-7-10-4g/mL的微量组分。
2. 准确度高:相对误差在1%-5%之内。
3. 适用范围广:既能进行定量分析,又可进行定性分析和结构分析(主要分析分子中官能团)。既可用于无机化合物的分析,又可进行有机化合物的分析等。
4. 操作简单,快捷
研之成理面向所有感兴趣的朋友征集专栏作家,主要包括专业软件(比如Digital Micrograph, TIA, Photoshop,Chemoffice,Material studio等)和基础知识(XRD结构精修,核磁,红外,程序升温实验,同步辐射,质谱,AFM,STM)的分享,以及相关领域最新文献赏析。目前,由于小编人数有限,总结的周期会比较长,如果有更加专业的人来分担一部分的话,应该可以让大家更快更好地学到更多内容。
欢迎愿意分享的朋友联系我们:邹主编(QQ:337472528)或者陈主编(QQ:708274),谢谢!
最后,真诚地希望大家能够在这个平台上展示自己,将自己的思想传递给更多的人。
为方便研友们进行学术讨论,研之成理也开创了自己的QQ群,1号群:已满;2号群:已满;3号群:585629919。欢迎大家加入进行激烈的学术讨论!
本文版权属于研之成理,转载请通过QQ联系我们,未经许可请勿盗版,谢谢!
长按下图识别图中二维码或者搜索微信号rationalscience,轻松关注我们,谢谢!